Jump to content
cannar

õlaprobleem

Recommended Posts

Tere austatud spetsialistid.

Probleem siis nimelt rinnalt surumisega.

Kuskil aasta tagasi vigastasin vasakut õlga horisontaalpingil hantleid lennutades. Vigastus tekkis siis kui olin just seeria lõpetanud ja tõusin kuidagi kiirustades istesse hantlid poolkõverdatud kätega kehasuhtes risti ees. Käis mingi nõks õlast läbi. Peale seda oli terve õlg valus (eriti tiivanuki pealt). Ajapikku läks asi üle.

Nüüd siis paar nädalat tagasi tegin oma järjekordset trenni (rind, biitseps, triitseps). Kõik oli OK. Järgmisel päeval oli põhimõtteliset vasakut kätt võimatu tõsta. Õlg oleks nagu paigast ära, siis nagu mingis asendis (õlaliiges oleks nagu paika läinud) lubas läbi valu kätt tõsta. Nüüd on valu tiba järele andnud, laseb kätt liigutada, trenni pole teinud.

Kas on kellelgi midagi sellist ette tulnud. Kahtlustan, et see õla paigast minek võis olla surumise tagajärjel. Või on süüdi skeleti eripära, nimelt on loodus mulle kaasa andnud laiad õlad.

Ette tänades.

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

Tseki spordiarsti juurde kindlalt

Ja kui surud ära lehvita küünarnukke, st ära hoia 90' nurga all vaid proovi kehale lähemal hoida ... kulturistid küll räägivad et 90' on effektiivsem, siis tegelt see nii ei ole ja lõhub lihtsalt õlgu

Jaga seda postitust


Viita postitusele
Jaga teistes saitides
Tere austatud spetsialistid.

Probleem siis nimelt rinnalt surumisega.

Kuskil aasta tagasi vigastasin vasakut õlga horisontaalpingil hantleid lennutades. Vigastus tekkis siis kui olin just seeria lõpetanud ja tõusin kuidagi kiirustades istesse hantlid poolkõverdatud kätega kehasuhtes risti ees. Käis mingi nõks õlast läbi. Peale seda oli terve õlg valus (eriti tiivanuki pealt). Ajapikku läks asi üle.

Nüüd siis paar nädalat tagasi tegin oma järjekordset trenni (rind, biitseps, triitseps). Kõik oli OK. Järgmisel päeval oli põhimõtteliset vasakut kätt võimatu tõsta. Õlg oleks nagu paigast ära, siis nagu mingis asendis (õlaliiges oleks nagu paika läinud) lubas läbi valu kätt tõsta. Nüüd on valu tiba järele andnud, laseb kätt liigutada, trenni pole teinud.

Kas on kellelgi midagi sellist ette tulnud. Kahtlustan, et see õla paigast minek võis olla surumise tagajärjel. Või on süüdi skeleti eripära, nimelt on loodus mulle kaasa andnud laiad õlad.

Ette tänades.

Mine spordiartsile ja lase ravi panna, see sul nii üle ei lähe arvatavasti!Ja ära oota niikaua kuni asi läheb krooniliseks, siis on op ka kindlustataud! :lol:

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

Omal läks õlg ära võrkpalli mängides ja aastaid ei saanud pea kohalt servida ja suruda. Mõtlesin, et lootusetu. Umbes 4 aastat tagasi läksin Audentese spordiarsti dr. Annuse jutule ja piisas ühest süstist õlga ja siiani OK.

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

tegelen ise ka võrkpalliga ja jõusaaliga, ja endal ka võrkpallis natuke paha ülevalt lüüa ja servida, kuigi proovin mõnusalt soojaks teha ja asju siis läheb natuke paremaks, viimasel ajal pole palju tunda andnud, aga soovitan kindlasti fastum geli või arsti juurde;)

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

mul oli u. aasta tagasi paremal õlal kõõluse rebenemine. kannatasin ka pikka aega ja lõpuks läksin audentesesse dr. Annuse juurde. Süsti tegi ära ja valu kadus ka. Aga mõne aja pärast, kui trenni aktiivsust tõstsin, tuli valu jälle tagasi. Läksin aga jälle Annuse juurde ja sain jälle süsti õlga. Aga ikka on vahel õlas väike valu sees. Ei tohi teha nimelt selliseid harjutusi, kus käsi läheb raskusega õlast kõrgemale. Krooli ujuda ka ei saa - tuleb valu sisse. Ei teagi nüüd kas minna kolmandat korda süsti saama (valud on ikka kõvasti vähenenud nende süstidega) või ei saagi enam õlga täitsa korda...

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

põlved on teine teema millega Annuse juures käisin:) Sinna süsti ei saanud, aga võtan pikemat aega glükosamiini. Vaikselt hakkab asi paremaks ka minema, aga väga ettevaatlik pean olema - väiksemgi ülepingutus tekitab kohe paariks päevaks valu põlvedesse.

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

Hehe... ma elan juba poolteist aastat reziimis väike ülepingutus, paaripäevane valu, väike ülepingutus paaripäevane valu.

Jaga seda postitust


Viita postitusele
Jaga teistes saitides
Jääb mulje nagu oleksid dr. Annusel mingid imesüstid :lol: Peaks laskma enda põlve ühe süsti teha...

See on arvatavasti kenalog, kortikosteroid, mis põletiku kiirelt alla võtab , aga ka kõrvalmõjud on olemas.

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

Soovitan põhjalikult tudeerida teksti :

KINESIOLOGY AND BIOMECHANICS OF SHOULDER JOINT MOVEMENTS ON RESISTANCE TRAINING EXERCISES

By Professor Maur?cio de Arruda Campos, Ph.Ed.

Anatomy of the Shoulder Joint

The shoulder girdle is made up of the clavicle and the scapula. The articulations within the shoulder girdle are the sternoclavicular, acromioclavicular and the coracoclavicular joints. The shoulder girdle articulates with the trunk at the sternum in a joint called sternoclavicular, with the thorax at the scapulothoracic joint and with the upper extremity with the humerus at the glenoumeral joint.

The anatomical landmarks of the scapula that are of great importance for a good analysis and comprehension of shoulder movements are: the anterior and superior surfaces, the supraspinous, infraspinous, subscapular and glenoid fossa, the coracoid and acromion processes and the coracoacromial arch. The head, neck, greater and lesser tuberosities of the humerus are also very important anatomical landmarks for this bone.

The sternoclavicular joint is very unstable because there is no bony prominence that helps to hold the two bones together. This joint is the site for most of the movements of the scapula (elevation, depression, upward rotation, downward rotation, abduction and adduction) and is also were the axis of rotation is located for the movements of the shoulder girdle. It absorbs sideward impacts of the shoulder and has four ligaments that provide the stability for the articulation of the two bones.

The acromioclavicular joint functions to absorb the stress of impacts on the shoulder and also have weak bony arrangements, thus poor stability.

The coracoclavicular joint has a ligament arrangement that reinforce the weak acromioclavicular articulation by transferring the force applied to the acromion process of the scapula to the clavicle.

Although there is no real bone-to-bone articulation between the acromion process and the coracoid process, there is the very important coracoacromial ligament that binds these two bony prominences. This ligament is of great importance as a buffer for the rotator cuff muscles (supraespinatus, infraespinatus, subscapular and teres minor) that run superior, posterior and anterior to the humeral head and can be subjected to pressure and impact from the acromion process during the performance of over arm movements.

The shoulder joint is designed to provide great mobility and because of this its stability is reduced. The muscular arrangement of the shoulder girdle and the shoulder joint is designed to provide the stability that lacks as a result of weak bony and ligamentous arrangements. The muscles are strong enough to provide necessary stability, but the lack of upper body strength accounts for a great deal of injuries at the shoulder region.

The shoulder joint is made up of the articulation of the scapula (glenoid fossa) and the head of the humerus. Less than half of the head of the humerus is in the socket at any one time and because of this the bony arrangement of the shoulder joint is weak. To help stabilize the joint there is a labrum or lip of cartilage that encircles the outer fossa to increase its depth to assist in keeping the head of humerus in place. The shoulder is a multi-axial joint (produces movements in three planes and axis). The glenoid fossa is directed slightly anteriorly providing a little more stability to backward movements of the humerus, but on the other side leaves the forward position more vulnerable to dislocations. As any other joint in the human body the stability of the shoulder depends on the bony, ligamentous and muscular arrangement and a joint that is designed for mobility like the shoulder joint have weak bony and ligamentous arrangements depending much more on its muscular strength and arrangement for stability. This is why it’s so important to have a good knowledge of shoulder mechanics and good technique to prevent injuries at this joint during resistance exercises.

Muscles of the Shoulder Joint

The intrinsic musculature that surrounds the shoulder joint is arranged to produce a very good stability. Part of these intrinsic muscles (four) is called the rotator cuff and has large stabilizing components that are directed medially. Thus, regardless of the humerus position, the rotator cuff is responsible for the maintenance of the head of the humerus close to the glenoid fossa. The contraction of the deltoid muscle, for example, produces an upward translation of the head of the humerus that must be counteracted by the components of depression from the rotator cuff muscles. Further stability is provided via the long head of biceps brachii (anteriorly) and triceps (posteriorly). As these muscles are antagonists the biceps have a greater stabilizing component when the shoulder joint is extended and vice-versa. As with the deltoid muscle, the upward component of these muscles (biceps and triceps) must be counteracted by the depression components of the rotator cuff muscles. Most of the other muscles also have some stabilizing component at the shoulder but their main function is to move the joint so they are not considered stabilizer but movers and they are part of the extrinsic musculature.

The muscles and the movements they produce at the shoulder complex are demonstrated at the table bellow:

SHOULDER JOINT MUSCLES AND THEIR ACTIONS

MOVEMENTS MUSCLES JOINTS THEY CROSS

Flexion

Biceps Brachii

Anterior Deltoid

Coracobrachialis

Pectoralis Major (clavicular) Shoulder/Elbow/Radioulnar

Shoulder

Shoulder

Shoulder

Extension Posterior Deltoid

Tr?ceps

Latissimus Dorsi

Teres Major Shoulder

Shoulder / Elbow

Shoulder

Shoulder

Abduction Middle Deltoid

Supraespinatus Shoulder

Shoulder

Adduction Pectoralis Major

Latissimus Dorsi

Teres Major Shoulder / Sternoclavicular

Shoulder

Shoulder

Medial Rotation Latissimus Dorsi

Teres Major

Subscapularis

Anterior Deltoid

Pectoralis Major Shoulder

Shoulder

Shoulder

Shoulder

Shoulder

Lateral Rotation Infraespinatus

Teres Minor

Posterior Deltoid

Shoulder

Shoulder

Shoulder

Horizontal Adduction Pectoralis Major

Coracobrachialis

Anterior Deltoid Shoulder / Sternoclavicular

Shoulder

Shoulder

Horizontal Abduction Triceps

Posterior Delt Elbow/ Shoulder

Shoulder

Mechanics of Arm Abduction

The nature of arm abduction is interesting and complex. The coordination of the shoulder complex not only allows the mobility necessary for the reaching, grasping and throwing functions of the upper extremity but also provides the structures necessary to stabilize an inherently weak bony and ligamentous arrangement. The motion of the scapula, clavicle and humerus to achieve full elevation of the arm is called Scapulohumeral Rhythm.

The supraespinatus initiates the first few degrees of shoulder abduction because this muscle has a better angle of pull than the deltoid at the beginning of the movement. At initial stages, the stabilizing component is actually a dislocating one, because it is directed in such a way that it pulls the head of the humerus upward into the inferior side of the acromion process. To overcome this problem two thing occur: 1) As the humerus abducts, the scapula upwardly rotates at a ratio of 3:2, that is, the glenoid fossa rotates upward 2 degrees for every 3 degrees of humeral abduction. This action moves the acromion process out of the way as the greater tuberosity of the humerus approaches. 2) The rotator cuff muscles tense to stabilize the humeral head against the glenoid fossa so that the component of the deltoid muscle (that would tend to displace the humerus upward) is neutralized. Three of the rotator cuff muscles (infraespinatus, subscapularis and teres minor) have downward components to perform this stabilization.

Shoulder impingement Syndrome

Shoulder impingement syndrome is a common cause of shoulder and upper extremity pain and dysfunction in both athletic and nonathletic populations. It can occur in any age group and at various activity levels. Typically impingement occurs in athletes or workers who engage in repetitive overhead activities. Repetitive discrete or continuous skills that require the shoulder joint to be abducted of forward flexed and medially rotated cause shoulder pain in a significant number of athletes. Some people call this syndrome, the rotator cuff impingement syndrome, although only one rotator cuff muscle is impinged. The long head of the biceps brachii muscle (which is not part of rotator cuff muscle) also becomes impinged. The inflammation occurs from the squeezing of the supraespinatus tendon, which passes over the head of the humerus and under the coracoacromial ligament. The latter two structures make us what is known as the coracoacromial arch.

The compression of the head of the humerus upward and inward to the glenoid fossa and the coracoacromial arch is a motion that should be prevented by those muscles that have force components downward and that stabilize the humerus against the upwardly directed forces. The stabilizing muscles are those that have a downward force components when the arm is abducted of flexed mainly over the shoulder height.

Most functional glenohumeral motions occur in the same plane as the scapula which is approximately 30 to 45 degrees anterior to the frontal plane of the body. In this position, muscles are aligned optimally and the inferior joint capsule is not twisted.

All four articulations of the shoulder must act together in order for proper shoulder motion to occur. The contribution of each articulation is necessary for full range of motion of the humerus. In the first 30-40 degrees of elevation the scapula moves little if at all. As elevation continues, the scapula rotates upward 1 degree for every two degrees of humeral elevation. The maximum amount of scapular rotation is about 60 degrees and since total elevation typically equals 180 degrees, the glenohumeral joint contributes about 90 to 120 degrees of the total elevation.

Normal Scapulohumeral rhythm insures optimal position of the humeral head in the glenoid fossa thereby ensuring full range of motion and normal muscle (mainly the deltoid) length-tension relationships. During elevation, the humerus also needs to medially rotate to prevent its greater tuberosity from impacting against the acromion.

Proper muscle function is also necessary to achieve full elevation of the arm. As the elevation of the humerus occur, the serratus anterior and the upper and lower trapezius muscles combine to form a force couple that upwardly rotates the scapula. The rotator cuff muscles are also important in normal mechanics of elevation. The supraespinatus helps the deltoid in abduction and is generally considered the most responsible for the initiation of this movement. As well, the supraespinatus is described as a stabilizer, functioning to position the head of the humerus on the glenoid fossa and to compress it against the glenoid. All the other muscles of the rotator cuff contract together to form help depress the head of the humerus. Thus these muscles are responsible for the dynamic stability of the shoulder. This depression of the humeral head is extremely important to prevent the head of the humerus to impact against the coracoacromial arch or acromion.

Any condition that causes a narrowing of the subacromial space or enlargement of subacromial structures (mainly the supraespinatus tendon, the tendon of the long head of biceps and subacromial bursa) can also lead to impingement of these structures. Structural and physiological abnormalities can promote impingement. Structural etiologies include a curved acromion, calcium deposits, osteophytes, a thickened bursa, thickened ligaments or anything that diminishes the subacromial space.

Physiological etiologies include excessive superior dislocation of the humeral head due to weakness of the rotator cuff muscles or impairment of the Scapulohumeral rhythm secondary to poor neuromuscular coordination or weakness of the muscles that promotes scapular upward rotation.

Joint laxity is another cause of secondary impingement due to glenohumeral joint instability. Movements with excessive range of motion that increase joint laxity may lead to instability of the glenohumeral joint. Some examples of movements are excessive horizontal abduction at the bench press exercise or at the pectoral machine with the shoulder joint abducted 90 degrees and laterally rotated.

Glenohumeral joint capsule tightness may also contribute to shoulder impingement. The tightness of the posterior capsule can lead to increased anterior gliding and increased superior migration of the humeral head during elevation.

Tightness of the inferior capsule diminishes the amount of inferior movement of the head of humerus and if the head is not able to depress, the subacromial space is diminished, increasing the likelihood of impingement.

Another area of consideration is called “the critical zone”, an area of hipovascularity in the distal supraespinatus muscle tendon. When the arm is adducted the head of the humerus compresses the supraespinatus tendon leading to lack of blood flow to this region of the muscle. This reduced circulation may indeed hasten the microscopic degenerative changes in the supraespinatus tendon.

Conclusion

Maximizing shoulder function is dependent on identifying and modifying structural, biomechanical or Kinesiological parameters. Many structural problems may need surgical correction in order to promote adequate subacromial space. Most biomechanical and Kinesiological problems may be prevented with a selection of safe exercises and proper form or can be treated conservatively.

Normal strength of the direct humeral head depressors (teres minor, infraespinatus and subscapularis muscles) and normal joint capsule laxity are the key to successful management of shoulder impingement.

Strengthening of the rotator cuff muscles is paramount to improve dynamic inferior glide or humeral depression mainly during overhead exercises.

Strengthening of the scapular muscles is critical to allow for proper upward rotation of the scapula and to create a stable platform for humeral movement and prevent excessive approximation between the head of humerus and the coracoacromial arch, thus enhancing both stability and mobility of the shoulder complex.

Restoration from tightness to normal joint capsule laxity and/or prevention of joint capsule excessive laxity can not be overlooked on the prescription of exercises. Mobilization and stretch techniques to improve posterior capsule flexibility and to improve inferior humeral glide may prevent upward migration of the humeral head during overhead activities. Also, a special care with excessive range of motion on selected exercises and arm positions may prevent excessive joint laxity in one particular side of the joint leading to imbalance and to both static and dynamic instability of it.

With all these safety considerations most athletes could plan a very effective and safe shoulder exercises program that will enhance the stability of this joint and strengthen the muscles that surround it with a very low risk of injuries or chronic degenerative syndromes of the shoulder joint.

Professor Maur?cio de Arruda Campos

Professor of Kinesiology, Biomechanics and Fitness from the Faculty of Physical Education of the University of Franca – UNIFRAN;

Professor of the Specialization Course of Strength training and Conditioning from the Faculty of Physical Education of the University Claretianas –CEUCLAR;

Scientific Director from the Brazilian Federation of Bodybuilding and Fitness and Coach for the Brazilian Male Bodybuilding Team;

Member of the Scientific Committee from the European Federation of Bodybuilding and Fitness;

General Secretary of the Brazilian Association for Studies and Control of Doping;

Owner of a Gym called F?sico & Forma since 1989;

Biomechanics advisor for “NakaGym” Weight Training Equipment Industry;

Author of four books in the area of Kinesiology and Biomechanics of Resistance Exercises

Jaga seda postitust


Viita postitusele
Jaga teistes saitides

Please sign in to comment

You will be able to leave a comment after signing in



Sign In Now

  • Viimati Sirvimas   0 liiget

    Ühtegi registreeritud kasutajat ei vaata seda lehte.

×